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Abstract 
 A parameter study was performed for the Los Alamos National Laboratory Blast Tube to 
tune geometry to best replicate peak blast pressures from experiments. Charge placement, 
reflecting wall thickness, flange gap width, and reflecting wall stand-off were sampled using a 
Latin-Hypercube design to train a Radial Basis Function Network surrogate model. This 
surrogate model was then used with a Nelder-Mead Simplex minimization routine to minimize 
error for the surrogate predictions. 
 
1. Introduction 
 
 The LANL blast tube is used to generate directed blast waves to test blast effects on full scale 
test articles. The tube consists of five 30 ft long sections with an 8 ft outer diameter and 2 in wall 
thickness bolted together at standard pipe flanges and is made from A36 steel. The closed end is 
a reinforced rail cart with a large, free-floating steel plate acting as a shock reflector. An 
explosive is placed a set distance from the reflecting wall and test articles are placed at the open 
end of the tube. Figure 1 shows an aerial view of the tube at the test site before modification of 
the rail cart. This report summarizes simulation and research efforts to match experimental 
pressure pulses with the PAGOSA hydrocode [1]. In terms of dimensions and geometric extent, 
the blast tube is the largest geometry modeled in PAGOSA.  
 A parameter study was carried out to investigate the variation of the charge position relative 
to the reflecting wall, reflecting wall thickness, and flange gap width and their effect on peak 
pressure.  This was accomplished by following the statistical method of Latin-Hypercube 
sampling [2].  Python was used to generate the PAGOSA input files with the varying parameters. 
A Radial Basis Function Network (RBFN) [3] surrogate model was used with a Nelder-Mead 
simplex minimization routine [4] from the SciPy Optimize module [5] to find the minimum error 
solution for a simple sum of the errors cost function of the peak gauge pressure at the end of the 
blast tube for two experiments where the amount of the C4 explosive was varied, BTC-08 (75 lbs 
of C4) and BTC-10 (115 lbs of C4) which used similar charge setups and data acquisition 
methods. 
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Figure 1. Aerial view of the LANL Blast Tube 

2. Methods 
 
2.1 Parameter Space and Sampling 
 The parameter space for this optimization problem was constrained to relevant geometry 
rather than changing the equation of state tuning for the C4. Table 1 shows the geometry 
variables used for the simulations and their respective sampled ranges. A total of 20 Latin-
Hypercube samples with 2 extremal value samples was used to explore the input space. 
 

Table 1. Parameter Space for Geometry Optimization 
Parameter Minimum Maximum 

Reflector Gap (in) 0.5 5 
Reflector Thickness (in) 0.25 1.5 
Charge position (ft) 9.5 10.5 
Flange Gap (in) 0.004 0.4 

 
 
2.2 Radial Basis Function Network (RBFN) surrogate model 
 A Radial Basis Function Network (RBFN) python class variable was created to emulate 
simulation data. The RBFN surrogate uses radial basis functions to calculate the weight of 
influence of a given dataset. The output of the RBFN is then the linear combination of these 
weights. The network can be described using the equation: 
 

𝑓(𝒙) = &𝑤(𝜑(‖𝒙 − 𝒄𝒊‖)
.

(/0

 (1) 

  
where 𝑓(𝒙) is the function being approximated, 𝑤( is the network of weight factors, 𝒙 is the 
vector of model inputs, and 𝒄𝒊 are the set of N training points sampled from the input space. The 
function 𝜑(‖𝒙 − 𝒄𝒊‖) is a radial basis function applied to the distance between the test point 𝒙 
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and the training points 𝒄𝒊. Common basis functions are Thin Plate, Gaussian, Multiquadric, and 
Inverse Multiquadric. Much like shape functions used in finite element methods, these basis 
functions control the weight of the interpolations between the 𝒄𝒊 training points at each test point 
of interest. The quantity ‖𝒙 − 𝒄𝒊‖ is the Euclidean distance between the test point and each 
training point; that is, the radius between the N-dimensional points. Functional forms for these 
common basis functions are as follows: 
 

𝜑(‖𝒙 − 𝒄𝒊‖) = 	𝜑(𝑟) = 	 𝑟3ln(kr)                     (Thin Plate) (2) 

𝜑(‖𝒙 − 𝒄𝒊‖) 	= 	𝜑(𝑟) = 	exp	(𝑘𝑟3)                    (Gaussian) (3) 

𝜑(‖𝒙 − 𝒄𝒊‖) 	= 	𝜑(𝑟) = 	√𝑟3 − 𝑘3               (Multiquadric) (4) 

𝜑(‖𝒙 − 𝒄𝒊‖) 	= 	𝜑(𝑟) = 	 0
√=>?@>

        (Inverse Multiquadric) (5) 
 
where the constant k is a tuning parameter which can be changed increase accuracy of the 
surrogate. Of the 22 samples taken, 4 were reserved for model validation. The SciPy 
optimization routine (scipy.optimize.minimize) is used to obtain a suitable tuning parameter 
within the RBFN class my minimizing the validation error of reserved data sets. 
 
 
3. Results and Discussions 
 
 Simulations were performed with the finite-difference hydrocode PAGOSA with a 1 cm 
mesh resolution in a 302x6334 cell grid on 576 processors with an average run time of 8.5 hours. 
The end tube pressure data was read from a tracer near the tube wall 5 ft from the open end of 
the tube. Stress data for each charge configuration was read from the outside of the tube wall at 
the charge centerline. The geometry of the initial model is shown in Figure 2. The materials and 
models used are described in Table 1. Here, the roll cart is modeled as a large cylindrical steel 
mass. 
 The C4 charge is modeled as a hollow cylinder with an inner diameter of 1.65 in. The carbon 
fiber backbone of the charge was modeled as a Poly(methyl methacrylate) (PMMA) plastic 
cylinder. This cylinder provides confinement for the interior of the charge and prevents the 
Jones-Wilkins-Lee equation of state for the C4 charge from becoming overdriven due to 
reflected shocks from the axisymmetric mesh boundary. For BTC-8, the 75 lb charge was 
approximately 50 in long, giving a linear weight density (LWD) of 18 lb/ft. For the hollow 
charge geometry, this gives and outside diameter of 5.3929 in to match the LWD of the 
experiment. For simplicity, both the 75 lb and 115 lb simulations use the same charge diameters.  
The actual LWD for BTC-10 was approximately 14.375 lb/ft with a 115 lb charge about 96 in 
long.  
 The initial model for the A36 tube was a solid-walled hollow cylinder ignoring gaps at the 
bolted flanges. Due to overpredictions of pressure at nearly every charge weight, extra energy 
losses were required. The flanges were later inserted and modeled as a simple gap at the end of 
the tube sections every 30 ft. However, after performing a preliminary study on the tube 
geometry by taking Latin-Hypercube samples of the reflecting wall thickness (0.25 - 1.5 in), 
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flange gap width (0.004 - 0.4 in), charge position relative to the closed end (9.5 - 10.5 ft), and the 
reflecting wall gap with the tube (0.5 – 5.0 in), the optimized RBFN surrogate model was unable 
to predict pressures for subsequent PAGOSA runs for the 115 pound charge weight and 
simulations would be consistently >20 psi high. Instead of increasing the flange gap width, more 
flange gaps were inserted along the length of the tube every 15 ft to allow for bleeding off more 
energy. Doing so enabled the RBFN to optimize within ~3 psi of both 75 lb and 115 lb PAGOSA 
simulations for the same geometry. Both surrogates were trained on 18 samples, with the 
remaining 4 used as validation sets for the RBFN tuning parameter (k in equations 2-5). For this 
sample, the optimized geometry was mostly stable with respect to the number of training sets 
versus validation sets. 
 Air was given the highest priority for the PAGOSA advection algorithm for the initial 
geometry study. Typically, simulation material priorities are in the order of the expansion of the 
HE in the direction of material flow (e.g. booster > HE > confinement > air > steel). The entire 
study was repeated using material priorities in the order of expansion for flow to the right for two 
cases: flange gaps every 30 ft and flange gaps every 15 ft. For both cases, the RBFN was unable 
to predict PAGOSA output for any optimized geometry. An additional 28 samples (50 total 
samples) were taken for each charge weight to provide more data for the RBFN to discern 
parameter relationships. Even with the additional samples, the RBFN surrogate was unable to 
predict PAGOSA simulation output. Additionally, the surrogate demonstrated a wildly variable 
optimized solution depending on the number of datasets trained on for the new priority order. 
From this it was decided to stick to the initial material priority order. 
 
 

 
Figure 2. Blast tube geometry in PAGOSA (charge size exaggerated) 

 
Table 1. Materials and models for PAGOSA simulations 

Material Equation of State Strength Burn Priority 
A36 Steel [6,7] Mie-Gruneisen Johnson-Cook - 2 

C4 Jones-Wilkins-Lee - Programmed 4 
Tetryl Jones-Wilkins-Lee - Programmed 5 

Air SESAME (5030) - - 1 

PMMA SESAME (7750) Elastic-Perfectly 
Plastic - 3 

 
 
3.1 Shock Front Time-of-Arrival 
 In order to extract time-of-arrival (TOA) data for the shock front in PAGOSA, artificial 
viscosity for air is monitored using tracer particles near the tube wall. The first peak in artificial 
viscosity is associated with shock traversal in air before the reaction product gases reach the 
tracers. Figure 3 shows the TOA for a PAGOSA simulation of a 75-pound C4 shot compared to 
experiments using a hollow charge geometry with varying types of confinement. For these 
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simulations, having no confinement, especially for the interior of the charge, causes the Jones-
Wilkins-Lee (JWL) equation-of-state (EOS) to become overdriven. Having exterior confinement 
causes the shock propagation to slow down. For all simulations hereafter, hollow charge 
configurations will use an interior confinement of low density PMMA (~0.6 g/cc) with a 
SESAME EOS to hinder interior shock reflections. 
 
3.2 Effect of Charge Diameter on Tube Stresses 
 An early investigation was to determine the effect of the charge setup, namely the diameter 
of the charge, on stresses in the tube. For constant weight, changing the outer diameter changes 
the linear weight density (LWD) which directly influences the amount of explosive burned per 
foot of charge. Figure 4 shows the effect of changing the LWD for the 75 pound and 115 pound 
shots. 
 
 The peak pressure readouts for both the 75 lb and 115 lb C4 simulations show a more or less 
undefined relationship for change in pressure versus a change in linear weight density but overall 
show a general increase as linear weight density increases. Both peak stresses and peak total- and 
plastic deflection values directly follow the increase in linear weight density. 
 
 

 
Figure 3. Time-of-arrival (TOA) data for 75 pounds of C4 with varying methods of 

confinement 
 
 
3.3 Optimizing Pressure Pulse Curves 
 As a first pass at optimizing the problem geometry and replicating experimental values, the 
entire pressure pulse curves were used as an optimization target. To improve model correlations 
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to experimental data and reduce signal noise, the experimental data signals were filtered using a 
Savitsky-Golay filter, interpolated to the same timesteps, and averaged. Figure 5 gives an 
example of a Savitsky-Golay filtered dataset for the BTC-8 experiment. Due to late time error 
buildup at the far-right transmissive mesh boundary, a large pressure builds on the mesh and 
subsequently shoots back down the tube in the opposite direction, typically twice the outgoing 
pressure. As a consequence, experimental and simulation signals are cut off at 60 ms. 
 Due to the high variability of the shock wave timing down the tube due to changes in 
geometry, the simulated shock front lags between 3 ms to 6 ms behind. This causes the surrogate 
model prediction of the initial pressure jump to fall well below expected. In order to best match 
pressure curve shape, the timing for each simulation is adjusted such that the maximum pressure 
occurs at the same time as the experiment’s max pressure. A secondary surrogate model is then 
used to predict the lag time of the simulation. Figure 6a shows the minimum error surrogate 
prediction compared to the experimental data for BTC-8. For figure 6a, the experimental and 
simulation curves were downsampled to 190 points from the approximately 40,000 experimental 
curve samples to reduce computational time of the optimization routine. Figure 6b shows a 
comparison of the optimized surrogate with a PAGOSA simulation using the optimized 
constants. The bounding from the model is a 95% probability range that results from a 5% 
perturbation of all variables with a Monte Carlo Simple Random Sampling (MCSRS) routine 
mainly to check model robustness around the optimized point. 
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Figure 4. Effect of Linear Weight Density (LWD) for charges of constant weight showing a) 
peak pressure and stress for 75 lbs of C4, b) maximum deflection and stress for 75 lbs of 
C4, c) peak pressure and stress for 115 lbs of C4, and d) maximum deflection and stress for 
115 lbs of C4 
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Figure 5. Averaged gauge pressure data signals for shot BTC-8 

 

 
Figure 6. a) Surrogate model best fit using the Nelder-Mead simplex method and b) 
comparison of optimized surrogate model with PAGOSA results for optimized constants 
 
 Using the constants optimized from the 75 lb of C4 shot, a 115 lb of C4 simulation was 
performed. This resulted in a significant overprediction in peak pressure as shown in Figure 7. 
By tuning the system to best represent BTC-8, the peak pressure for higher weight charges is 
overestimated. The inverse in true when tuning to BTC-10; peak pressures for lower charge 
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weights are significantly underpredicted. Two surrogate models were then trained for the 75 lb 
and 115 lb simulations separately and a simple sum of the errors cost function was used to 
minimize the error for both surrogates. However, when testing the optimized geometry from the 
multi-objective optimization for the 115 pound simulation, the PAGOSA results were not within 
an acceptable range of the surrogate model. The surrogate model would optimize to ~120 psig 
for peak pressure whereas the PAGOSA run for the same constants would predict ~150 psig for 
peak pressure. Though this problem may have been solved by taking more curve samples 
(significantly increasing optimization run times), it was decided to optimize the geometry using 
the peak pressure values only and disregarding timing. 

 

 
Figure 7. 115 lb C4 PAGOSA simulation using constants optimized from 75 lb C4 
surrogate model 
 
 
3.4 Optimizing to Peak Pressures 
 Since optimizing the surrogate models to the full pressure pulse misses the peak pressure for 
the 115 lb C4 simulations, the surrogate model and optimization scheme was used to emulate 
peak pressures only. The same multi-objective cost function, the simple sum of the errors for 75 
lb and 115 lb simulations, was used. A multitude of optimization objectives were tested. Table 2 
shows the optimization targets and their resulting model geometries and predicted PAGOSA 
outputs. Figure 8 shows the PAGOSA results using the RBFN optimized constants for both 75 lb 
and 115 lb charge weights. Since both charges have the same linear weight density, tube 
deflections should be nearly identical. Figure 9 shows the tube deflections for both the 75 lb and 
115 lb simulations. 
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Table 2. Blast tube simulation geometry resulting from varying optimization targets 
 

     75 lb C4 115 lb C4 

Optimization 
Target 

Reflector 
Gap (in) 

Reflector 
Thickness 

(in) 

Charge 
Position 

(ft) 

Flange 
Gap 
(in) 

Max 
Gauge 

Pressure 
(psi) 

Max 
von 

Mises 
Stress 
(ksi) 

Max 
Gauge 

Pressure 
(psi) 

Max 
von 

Mises 
Stress 
(ksi) 

75 lb 
Minimum 
Stress 

0.6919 0.7923 10.4130 0.0039 87.4511 44.3962 124.7950 49.4782 

115 lb 
Minimum 
Stress 

1.4111 0.6471 9.7603 0.1382 85.7134 46.5068 129.3642 44.1558 

BTC-8 Peak 
Pressure 0.6489 0.5476 10.2494 0.3170 92.5573 47.1097 128.4351 47.3449 

BTC-10 Peak 
Pressure 0.6748 0.4969 9.9382 0.3913 92.2577 46.5282 118.4522 47.5546 

BTC-8/10 
Peak Pressure 0.6488 0.6043 9.9054 0.3919 92.5573 46.4849 118.4522 47.1020 

 
 
 

 
Figure 8. PAGOSA simulations for multi-objective optimized surrogates for a) 75 lbs C4 
and b) 115 lbs C4 
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Figure 9. Tube deflection versus time for 75 lb and 115 lb C4 simulations 

 
3.5 Charge Weight Study 
 After optimizing the simulation geometry to best reproduce BTC-8 and BTC-10 (75 lbs and 
115 lbs, respectively) an additional check was made to check for pressure drop-off for higher 
weight charges. From experiments with other explosives in the blast tube, pressure would begin 
dropping off after a specific weight instead of the gradual, near-linear increase that’s expected. 
Before optimization, PAGOSA predictions showed a near-linear increase in peak pressure with 
increasing charge weight. Figure 10 shows the behavior of the end tube peak pressure as a 
function of charge weight. Each charge used the same hollow tube geometry with the same linear 
weight density (18 lb/ft). 

 
Figure 10. End tube peak pressure versus charge weight for experiment and PAGOSA 
simulations using geometry optimized to BTC-8 and BTC-10 
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 For the optimized geometry, the peak pressure delivered to the open end of the tube drops off 
after 125 lbs with a sudden spike at 190 lbs of C4. The pressure trace changes dramatically at 
this point as shown in Figure 11. Above 115 lbs of C4, the pressure pulse becomes less definite 
and the incident shock front fails to form a planar shock front. The incident shock from the 
hollow center of the charge entrains a “jet” of gas products as the charge detonates. Above 115 
pounds, this gas jet carries a shock at the tip. Subsequent radially reflected shocks from the tube 
wall interrupt the formation of the planar shock front. 
 

 
Figure 11. PAGOSA End tube pressure pulse for 115, 125, and 190 lbs of C4 

 
 
4. Conclusions 
 
 The following are conclusions and potential future improvements of this study: 
 

• PAGOSA was able to replicate two experimental data points for 75 and 115 pounds 
of C4. However, the geometry required is not the as-built blast tube geometry 
(flanges every 15 ft). Further investigation into the SESAME for air is encouraged. 

• The late-time difference in time-of-arrival may be improved by using a smaller mesh 
size, though at a significant detriment to simulation run time due to the size of the 
problem. Improvements in energy delivery may be made by using a smaller mesh size 
around the HE charge while maintaining the large mesh size towards the open end of 
the tube. 

• A Radial Basis Function Network (RBFN) was capable of predicting PAGOSA 
output within a reasonable level of accuracy (within 3 psi) using just the pressure 
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pulse peak values. Optimizing geometry using downsampled pressure pulse curves 
gave too much weight to the pressure drop-off which would cause the surrogate to 
miss the peak pressure. 

 
 
5. References 
 
[1] W. N. Weseloh, Clancy, S. P., Painter, J. W., PAGOSA Physics Manual, Los Alamos  

National Laboratory, Report LAUR-14425- M, 2010. 
 
[2] M. D. McKay, Beckman, R. J., Conover, W.J., “Comparison of three methods for selecting 

values of input variables in the analysis of output from a computer code,” Technometrics, 
21:2, 239-245, 1979. 

 
[3] D. Buhmann, M. (2003). Radial basis functions: Theory and implementations. Radial Basis 

Functions. 12. 10.1017/CBO9780511543241. 
 
[4] Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The 

Computer Journal 7: 308-13. 
 
[5] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python, 

2001-, http://www.scipy.org/ 
 
[6] Seidt, J.D., Gilat, A., Klein, J.A., Leach, J.R., “High Strain Rate, High Temperature 

Constitutive and Failure Models for EOD Impact Scenarios,” Proceedings of the SEM 
Annual Conference & Exposition on Experimental and Applied Mechanics, Society for 
Experimental Mechanics, 2007. 

 
[7] Roy, S.K., Trabia, M., O’Toole, B., Hixson, R., Becker, S., Pena, M., Jennings, R., 

Somasoundaram, D., Matthes, M., Daykin, E, Machorro, E., “Study of Hypervelocity 
Projectile Impact on Thick Metal Plates,” Shock and Vibration, V2016, Article ID 4313480, 
11p, 2016. https://doi.org/10.1155/2016/4313480 


